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Urban water demand is a complex function of socio-economic characteristics, climatic factors

and public water policies and strategies. Therefore a combination model is developed based on

the multivariate econometric approach which considers these parameters to forecast and

manage the urban annual water demand. Firstly, the factors correlative with water demand

are selected, then the trend and cyclical components of the factors are calculated by the

Hodrick–Prescott (HP) filter method. The multiple linear regression method is applied to simulate

the trend components and the fuzzy neural network is built based on the cyclical components,

and then the two models are combined to forecast the urban annual water demand. In order to

illuminate the model, it is used to forecast the annual water demand of Dalian against actual data

records from 1980 to 2007. By comparing with the traditional methods, the preferable model

accuracy demonstrates the effectiveness of the fuzzy neural network and multiple linear

regression based on the HP filter in forecasting urban annual water demand. After model testing,

the sensitivities of the influence factors in the model are analyzed. The results show the model is

reliable and feasible, and it also helps to make predictions with less than 10% relative error.
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INTRODUCTION

For an increasing number of countries, water scarcity has

become a major problem. The even-increasing consumption

of water among agricultural, industrial and urban use has

led to more vicious competition for water resources, thus

impeding social, industrial and rural development of many

countries (Hoffmann et al. 2006). However, the growing

consumption of water is not paralleled by the increasing of

water resources, and this fact, in turn, aggravates the

competition between regions or countries for water

(Ohlsson 1995). Especially in China, more than 400 cities

are suffering from insufficient water supply and about 110

cities are facing the more severe situation of water scarcity.

The annual urban water shortage amounts to 6 billion cubic

meters (Chen et al. 2005). Undoubtedly, the water problem

is an issue that deserves rigorous management and extreme

caution in preventing depletion.

To achieve effective water management in a city, an

analysis of water consumption is a must to determine which

area needs improvement, how it should be improved and

why needs improvement. Meanwhile, the water policies

and routines need to be revised to achieve efficiency.

According to the time horizon considered, water demand

forecasting can be classified as short-, medium- and long-

term forecasting. The short-term water demand forecasting

is used for real-time water control and allocation, while the

medium- and long-term water demand forecasting is used

for planning new developments or system expansion,

financial planning, capacity planning and so on (Jain et al.
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2001). This paper aims to establish a long-term forecasting

model to forecast the future urban annual water demand.

The long-term forecasting is a crucial part in the successful

operation of any water distribution system, planning of the

projected size of inter-basin water transfer and designing

the use of reclaimed sewage.

Historically, water managers have adopted conventional

modeling techniques such as regression analysis and time

series analysis, or a combination of the two. A lot of work on

short-term and medium–long-term water demand forecast

modeling using regression, time series analysis and

combinedmethods has beenwidely reported in the literature.

Regression analysis is the most frequently used

statistical technique to model water use from the various

related factors such as population size, price of water,

average income and annual precipitation. However, this

analysis also includes very strict assumptions such as normal

distribution and constant variance (Sen et al. 2003). Gato

et al. (2007) presents a new daily demand model incorporat-

ing base use values calculated using temperature and rainfall

thresholds for East Doncaster, Victoria, Australia was

evaluated. The model is based on a postulate that total

water use ismade up of base use and seasonal use, where base

use represents mainly indoor use and is independent of

climatic effects such as rainfall and temperature and seasonal

use on seasonal, climatic and persistence components.

Results revealed the recommended total daily water use

model has a combined coefficient determination, R 2 of 80%,

which is an improvement on the previous model by Gato

et al. (2003) with an R 2 of 65%. Babel et al. (2007) have

proposed multivariate linear, semi-log and log–log

approaches for domestic water demand modeling, which

considered nine parameters to forecast and manage the

domestic water use/demand. The application results have

indicated that the level of water pricing, public education

level and average annual rainfall were significant variables

for domestic water demand.

Time series forecasting, the most widely used approach,

relies on the direct identification of patterns existing in

historical water demand data. It is assumed that future

water use follows the trends in the past and the water use

over time is extrapolated into the future by graphical or

mathematical means. Thus the change in demand over time

may be assumed to follow a linear, logarithmic, exponential

or some other function. Jain et al. (2001) proposed a

relatively new technique of artificial neural networks for

short-term water demand forecasting, whose parameters are

weekly maximum air temperature, weekly rainfall amount,

weekly past water demand, and the occurrence and non-

occurrence of rainfall. An example application had shown

the artificial neural network models, with an average

absolute error of the best artificial neural network model

in forecasting of 2.41%, consistently outperformed the

regression and time series models, and it also showed the

best correlation between the modeled and targeted water

demands. Msiza et al. (2007) have applied artificial neural

networks with multi-layer perceptron and radial basis

functions to forecast water demand, in which the input is

past water use and annual population size, while the output

is monthly and annual water demand. Through comparison,

the results have shown that the radial basis functions

network is a better model with less validation errors.

Ghiassi et al. (2008) have presented the development of a

dynamic artificial neural network model for comprehensive

urban water demand forecasting with a forecasting accuracy

of more than 99%. They also examined the effects of

including weather information in the forecasting models

and found that such inclusion could improve accuracy.

But, using time series water demand data, the study has

demonstrated that a dynamic artificial neural network

model could provide an excellent fit and forecast without

reliance upon the explicit inclusion of weather factors.

In recent years, the relative new technique of a combined

forecasting model has been proposed as an efficient tool

for modeling and forecasting. The model, which takes

the advantages of the regression analysis and time series

methods, can analyze the relationship between water

demand and its exogenous variables such as weather and

economic factors, and forecasts the data trend based on the

past. Altunkaynak et al. (2005) have presented a Takagi–

Sugeno (TS) fuzzy method for forecasting future monthly

water consumption values from three antecedent water

consumption amounts, which were considered as indepen-

dent variables. After removing the possible trend from the

water use time series, the TS fuzzy model was applied to

monthly water consumption fluctuations of Istanbul in

Turkey. The results have shown that this model predicts

water consumption with less than 10% relative error.
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At present, research on the combined method are

relatively less in number than those on the regression and

time series analysis. Even in the study by Altunkaynak et al.

(2005), the model, which is established in the three

antecedent water consumption bases, did not consider the

effects of other external variables. Since urban water

demand is determined by different factors including the

water rights systems, water price, socio-economic

development and other natural factors, the urban water

consumption is characterized as random, fuzzy and chaotic.

Accordingly the fuzzy neural network (FNN) is presented to

find a more appropriate relationship between water

consumption and its influence factors (Zhou et al. 2006).

The FNN consists of two parts, where the first part is

to calculate the relative membership degree (RMD) for

the input data and the second part is a look-up table

for mapping input and output patterns. It can solve the

uncertainty and fuzzy problem effectively without requiring

prior knowledge of the underlying process or making any

assumptions about the relationship among variables

(Chen & Ji 2005). During the stage of learning, the weight

vectors between the hidden and output layers are adjusted

by supervised learning to reduce errors. A model with

increasing historical data can automatically improve rules,

thus enhancing its predictive ability. The FNN has efficient

clustering effects from a human-like ability of extracting

rules and good simulating results from nonlinear functions.

It is a good pattern recognition engine and robust classifier,

with the ability to make decisions from fuzzy input data.

According to the trend and fluctuations in the past data,

this study mainly develops a long term forecasting model to

predict the urban annual water demand. The target of

forecasting is urban annual water consumption, and the

purpose is to predict water demand amounts for planning

level years.Basedon thepast time series, themodel combined

multiple linear regression with a fuzzy neural network based

on a Hodrick–Prescott filter and is used to model annual

water consumption time series, whose inputs are five

influence factors including some socio-economic andclimate

parameters, and the output is the annual water consumption

time series. This paper is organized in the following manner.

Firstly some socio-economic and climate parameters are

selected as model inputs and annual water consumption

as the model output. Secondly the model is introduced.

It contains three aspects: (1) the Hodrick–Prescott (HP)

filter method is introduced, which is used to decompose

the time series of annual water demand and its influence

factors into trend and cyclical components; (2) the multiple

linear regression (MLR) is proposed, which is used to

simulate the trend components dataset and (3) the fuzzy

neural network (FNN) is presented, which is used to build

the model for the cyclical components dataset. Finally the

applicability of the model is demonstrated by using an

example of annual water consumption in Dalian, China,

and incorporating the trend dataset and the cyclical dataset

respectively for theMLR and FNN system to obtain themost

efficient model configuration.

URBAN WATER DEMANDS

The influence factors of urban annual water demand

The present study is to establish a long-term forecasting

model for urban annual water demand based on previous

annual water consumption and the time series of its

influence factors. Water demands are highly variable and

are affected by factors like the size of city, characteristics of

the population, the nature and size of commercial and

industrial establishments, climatic conditions and cost of

supply (Zhou et al. 2002), and they have meaningfully

increased because of various factors, such as local popu-

lation growth, global warming, expansion of city greenery

coverage, industrial growth and expansion, and conse-

quently a general rise in the living standards. Considering

the feasibility of the model, the model inputs are urban

annual population, GDP, the annual average temperature,

greenery coverage and the previous urban annual water

consumption, while the output is the future urban annual

water demand, and the factor values are all the annual

values. The urban population scale can mainly determine

domestic water; GDP has a positive correlativity with urban

annual water consumption and can represent the urban

economic development level both of industry and agricul-

ture; the urban greenery coverage can represent the urban

ecological situation, it can reflect not only the ecological

water consumption but also the annual precipitation; the

urban annual average temperature also has a large effect on

the water consumption: to be specific, the temperature has
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a positive correlativity with water demand. The higher the

temperature is, the more the domestic and irrigation water

consumption is; for the water consumption series, it has a

certain trend for past several decades, and has great

influence on the urban water demand in the future.

Consequently the study selected the following factors

with high correlation to forecast the annual water demand,

which are urban annual population, urban annual GDP,

urban annual average temperature, urban annual greenery

coverage and the previous annual water consumption. So

the urban annual water demand model can be denoted as

W ¼ fðP;G;AT;A;WUÞ ð1Þ

where W is the urban annual water consumption time

series, f is urban annual water demand function, P is the

urban annual population time series, G is the urban annual

GDP time series, AT is the urban annual average tempera-

ture time series, A is the urban greenery coverage time series

and WU is the previous urban annual water consumption

time series, WUt ¼ Wt21, where the subscript t represents

the variable for the tth year.

HP filtering for annual water demand and its influence

factors

With the passage of time, the annual urban water

consumption and its influence factors in a time series are

increasing with an obvious trend, but in response to

government policy and the influence of some emergent

events, those series also show some fluctuations. In order to

model the urban annual water consumption and make

future predictions, the HP filter technique is adopted to

separate the trend component and the cyclical component

from the original data. The HP filter is an algorithm for

choosing smoothed values for a time series (Hodrick &

Prescott 1997), and after filtering, the series is divided into

two series, namely a trend component series and a cyclical

component series. For annual water demand series and the

influence factors series, the HP filter is applied respectively

to divide them into two series.

Taking the water demand series W as an example,

the trend component series W T can be determined by

formula (2):

min
XN
t¼1

ðWt2WT
t Þ

2þl
XN
t¼2

½ðWT
tþ12WT

t Þ2ðWT
t 2WT

t21Þ�
2

( )

ð2Þ

where t represents the same as stated above; N represents the

sample size of W; the parameter l is a relative weight ofPN
t¼1ðWt2WT

t Þ
2 and

PN
t¼2½ðW

T
tþ12WT

t Þ2ðWT
t 2WT

t21Þ�
2,

l . 0. The first term of the equation is the sum of the squared

deviations WC¼W2WT which penalizes the cyclical com-

ponent. The second term is a multiple l of the sum of the

squares of the trend component’s second differences. This

second term penalizes variations in the growth rate of the

trend component. The larger the value of l is, the higher the

penalty is. Hodrick and Prescott advise that, for quarterly

data, a value of l ¼ 1,600 is reasonable; for yearly data, a

value of l ¼ 100 is reasonable.

The trend component is subtracted from the actual data

and the rest is called the cyclical component, that is

WC ¼ W 2 WT

Similarly, the influence factors series can also be

divided into a trend component series and a cyclical

component series by using formula (2). After HP filtering,

the water demand influence factors can be denoted as

ðP;G;AT;A;WUÞ ¼ {ðPT;GT;ATT;AT;WUTÞ; ðPC;GC;ATC;

AC;WUCÞ}:

Combined trend components and cyclical components

of the annual water demand and its influence factors

respectively, the urban water demand can be divided into

two parts to forecast:

WT ¼ f1ðPT;GT;ATT;AT;WUTÞ

WC ¼ f2ðPC;GC;ATC;AC;WUCÞ:

Selecting the influence factors trend components

as independent variables of the multiple linear regression,

and the cyclical components as the inputs variables of the

fuzzy neural network, the two types of multiple linear

regression and fuzzy neural network models are developed

for annual water demand trend and cyclical components,

respectively. The sum of the forecasting results of the trend
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and cyclical components is the annual water demand value.

Thus in order to compare the model of multiple linear

regression and fuzzy neural network, the trend components

and cyclical components are respectively forecast by the

two models.

MULTIPLE LINEAR REGRESSION

Regression analysis was used to investigate the linear

relationship between the trend component of the annual

water demand and the trend component of the socio-

economic and climate variables. Multiple linear regression

models were used. The aim of multiple regression analysis is

to obtain a linear equation that allows the dependent

variable W T to be estimated when the values of the

predictive variables PT;GT;ATT;AT;WUT are known:

WT ¼ b0 þ b1P
T þ b2G

T þ b3ATT þ b4A
T þ b5WUT ð3Þ

where the parameters b0;b1; … ;b5 represent the

contributions of each independent variable ðPT;GT;ATT;

AT;WUTÞ to the estimation of the dependent variable W T.

FUZZY NEURAL NETWORK

The architecture of fuzzy neural network

The fuzzy neural network (FNN), which incorporates fuzzy

recognition and a neural network, has both learning and

reasoning abilities. Combining the self-learning ability of a

neural network, and analyzing the law and fuzzy knowledge

in the data, the FNN is used to forecast through learning the

data mapping relationship. The FNN model is comprised of

user-defined inputs (population, rainfall, temperature, etc.)

and desired outputs (annual water demand) that are

connected by a set of highly interconnected nodes arranged

in a series of layers. These nodes are connected to the user-

defined inputs and to the desired output. Figure 1 illustrates

the FNN network architecture used in this paper with one

input layer with m nodes, one hidden layer with l nodes and

one output layer with one node.

Fuzzy neural network for water demand forecasting

According to the analysis of annual water demand influence

factors, the actual value of the annual water demand is

W ¼ {W1;W2; … ;WN}, the feature value for forecast

factors is X ¼ ðxijÞ, xij is the feature value of forecast factor

i to sample j, i ¼ 1;2; … ;m; j ¼ 1;2; … ;N, m is the node

number for the input layer: it equals the number of the

factors and N is the sample size of W. In order to classify,

the relative membership degree (RMD) of the forecast

factors needs to be determined. Here the extensive Gauss

function is selected to calculate the RMD:

rij ¼ exp 2
xij 2 ci

si

� �2" #
ð4Þ

where ci and si are respectively the central point and width

of forecast factor i:

ci ¼ �x ¼
1

N

XN
j¼1

xij si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 ðx 2 �xÞ2Þ

N

s

For the FNN, the network input is rij, which infor-

mation is translated from the input layer node i to the

hidden node, so the input and output is equal in node i, that

is uij ¼ rij; for node k in the hidden layer, the input is

Iij ¼
Pm

i¼1wikrij. The fuzzy membership degree (FMD)

function is adopted as the activation function between

nodes k and p. The output of node k is

ukj ¼
1

1þ
Pm

i¼1 wikrij

h i21
21

� �2 ¼
1

1þ ðI21
kj 2 1Þ2

ð5Þ

Figure 1 | FNN network architecture.
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where wik is the connection weight for nodes i and k and it

satisfies
Pm

i¼1wik ¼ 1, wik $ 0.

There is only one node in the output layer, the input is

Ipj ¼
Xl

k¼1

wkpukj ð6Þ

where l is the node number for the hidden layer, p is the

node number for the output layer, wkp is the connection

weight for the hidden layer and output layer,
Pl

k¼1wkp ¼ 1,

wkp $ 0. The output is

upj ¼
1

1þ
Pl

k¼1 wkpukj

h i21
21

� �2 ¼
1

1þ ðI21
kpj 2 1Þ2

ð7Þ

The output of the network is the response for the FNN

input rij. Supposing the expected output of annual water

demand j is MðupjÞ, the square error is as follows:

Ej ¼
1

2
½upj 2 MðupjÞ�

2 ð8Þ

When the square error is less than the set value, the

annual water demand can be calculated by the inverse

function of formula (4):

Wpj ¼ sið2lnupjÞ
1=2 þ ci ð9Þ

Principle of FNN training arithmetic

After HP filtering, the trend components and cyclical

components of water demand and its influence factors are

obtained. The RMD {rij} of each cyclical component for the

influence factor calculated by formula (4) is the input of

the FNN, and these inputs are converted into outputs by

some operation in the FNN. The model performance is

as follows.

(1) Firstly, to determine the input layer nodes m and

output layer nodes p by data records of influence

factors and annual water demand, we endow the

parameters wik; wkp and h in the FNN (see Figure 1)

with random initial values and give the maximum

calculating time l and constant 1.

(2) Input {rij} into the FNN and calculate the output upj by

using formulae (5)–(7).

(3) Calculate the network error by formula (8) and adjust

the weights to make the Ej minimum. Using the

gradient descent algorithm, the weight adjustment is

as follows:

Djwkp ¼ 2h
›Ej

›wkp
ð10Þ

Djwik ¼ 2h
›Ej

›wik
ð11Þ

Here, h is the learning coefficient.

According to formula (10),

Djwkp ¼ 2h
›Ej

›Ipj
·
›Ipj

›wkp
where

›Ipj

›wkp
¼ ukj

Let dpj ¼ h
›Ej

›Ipj
¼ 2

›Ej

›upj

›upj

›Ipj

Based on formula (8), we get

›Ej

›upj
¼ upj 2 MðupjÞ ð12Þ

›upj

›Ipj
¼ 2u2

pj

12
Pl

k¼1 wkpukjPl
k¼1 wkpukj

h i3
2
64

3
75 ð13Þ

Substituting the formulae (12) and (13) for dpj, we get

dpj ¼ 2u2
pj

12
Pl

k¼1 wkpukjPl
k¼1 wkpukj

h i3
2
64

3
75ðMðupjÞ2 upjÞ ð14Þ

So the weight adjustment for the hidden layer node

k to the output layer node p is

Djwkp¼2hu2
pjukj

12
Pl

k¼1wkpukjPl
k¼1wkpukj

h i3
2
64

3
75ðMðupjÞ2upjÞ: ð15Þ

According to formula (11), we get

Djwik¼2h
›Ej

›Ikj
·
›Ikj

›wik
¼2h

›Ej

›Ikj
rij ð16Þ
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Let

dkj¼2
›Ej

›Ikj
¼2

›Ej

›ukj
·
›ukj

›Ikj
¼2

›Ej

›ukj
2u2

kj

12
Pm

i¼1wikrijPm
i¼1wikrij

h i3
2
64

3
75;

›Ej

›ukj
¼
›Ej

›Ipj
·
›Ipj

›ukj
¼2dpjwkp

so

dkj¼2dpjwkpu2
kj

12
Pm

i¼1wikrijPm
i¼1wikrij

h i3
2
64

3
75:

Then the weight adjustment for input layer node i to

hidden layer node k is

Djwik¼2hrijwkpu2
kj

12
Pm

i¼1wikrijPm
i¼1wikrij

h i3
2
64

3
75dpj ð17Þ

(4) Return to step (2) until values of the error energy

function for the network (formula (8)) is less than the

set value 1 or the calculating time is bigger than the

maximum calculating time N.

APPLICATION

Dalian is located on the east coast of the Euro-Asia

continent, the most southern tip of the Liaodong Peninsular

in Northeast China. It is an important city of port, trade,

industry and tourism. As one of the most heavily developed

industrial areas of China, Dalian City is a serious water

shortage district, whose total amount of water resources is

32.83 £ 108m3 and per capita water resource is 575m3,

only quarter of the per capita water resources in China. In

Dalian, groundwater overdraft is serious, and the exploita-

tion and utilization ratio of surface water has reached 40%,

which is close to the internationally acknowledged bound-

ary of water utilization. With the development of living

standardd and social economy, the water crisis in Dalian is

increasingly serious. Consequently, to forecast water

demand and allocate the water reasonably is an important

basis for Dalian’s socio-economic development.

Numerical analysis is performed on annual water

demand and the influence factors (population, GDP, annual

average temperature, greenery coverage and annual water

consumption) obtained from the Dalian Yearbook. The

annual water demand and the influence factors series are

from 1980 to 2007. The preliminary step in investigating is

to divide the annual water demand series and the influence

factors series into trend components and cyclical com-

ponents by the HP filter. The trend components of annual

water demand and its influence factors are modeled by

multiple linear regressions, and the cyclical components are

analyzed by the fuzzy neural network. The two components

of the annual water demand series and its influence factors

series are divided into “training” and “testing” datasets. The

former set includes data from 1980 to 2000, i.e. 21 years of

annual water demand and its influence factors. The latter

contains 7 years of data for testing the model. Finally the

performances of the multiple linear regression (MLR) and

FNN models are analyzed through comparing the known

water consumption data from 2001 to 2007 with the

predicted values obtained from different models.

HP filter

Firstly, let l ¼ 100. The trend components and cyclical

components of both annual water demand series and

factors series are calculated by the HP filter formula (2).

The analysis results are shown in Figures 2–6.

Figures 2–6 show that the annual water demand

and its influence factor values for Dalian are increasing

Figure 2 | HP filtered figure of population.
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with some fluctuations in the past years and, because

of government policy and the emergent occurrence,

the fluctuations of different factors have different charac-

teristics. Since 1999, Dalian has had drought for five

continuous years. And during these years, the govern-

ment took some water-saving measures to restrict water

consumption. Consequently the factor values of GDP,

greenery coverage and water consumption are obviously

depressed, which can be seen from the cyclical curves

in Figures 3, 5 and 6.

After HP filtering, the correlation coefficients between

the trend components of annual water demand and factor

variables are all increased, but the correlation coefficients

between the cyclical components of annual water demand

and factor variables are decreased. The correlation

coefficient analysis results are listed in Table 1.

Modeling for the two components

After HP filtering, the increasing trend of annual water

consumption in the past few years is similar to the trends of

influence factors, and the correlations of trend components

between annual water demand and each factor are all

increased; even the correlation coefficients between annual

water demand and population, annual average temperature

and greenery coverage are all more than 0.90. The

regression equation for trend components, denoted as

HP-MLR(T), is established as follows:

Figure 6 | HP filtered figure of urban annual water demands.

Figure 3 | HP filtered figure of GDP.

Figure 4 | HP filtered figure of annual average temperature.

Figure 5 | HP filtered figure of greenery coverage.
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WT ¼ 101:414PT þ 3:293GT þ 3293:347ATT 2 3:013

AT þ 1:056WU T 2 73790:257 ð18Þ

Through analyzing the significance level, the trend

components of water demands and its influence factors

are especially obvious. For comparison, the FNN model is

established to forecast W T, denoted as HP-FNN (T).

The actual and simulated values of W T by these two models

are shown in Figure 7.

For the trend components with high linear correlation

coefficients, both simulated results by HP-MLR(T) and

HP-FNN(T) are close to the actual values, and can satisfy

the precision requirement.

For the cyclical components, the study adopts the FNN

to simulate the cyclical components, in which ðPC;GC;RC;

TC;ACÞ is the input to forecast W C, denoted as HP-

FNN (C). Firstly, using formula (4), the RMD of each factor

is calculated as the FNN input and the RMD of W C

is determined as the FNN expected output M(W C).

Then, according to the FNN training arithmetic, the cyclical

components of annual water demands are simulated by the

cyclical components of the influence factors. Because of too

many data, here we only list the RMD of P C and W C:

RðPCÞ¼

½0:985 0:009 0:417 0:802 0:682 0:179 0:376

0:995 0:251 0:013 0:033 0:718 0:989 0:999

0:845 0:958 0:969 0:887 0:698 0:222 0:878�

MðWCÞ¼

½0:967 0:994 0:996 0:999 0:604 0:549 0:972

0:513 0:742 0:914 0:994 0:807 0:295 0:978

0:995 0:662 0:792 0:076 0:159 0:203 0:874�

According to the network input, the input layer has

5 nodes, that is to say, m ¼ 5; and let the hidden layer

nodes l ¼ 6, endowing parameters wik; wkp and h in the

FNN with a random initial value, and giving the maximum

calculating time l ¼ 10,000 and calculated precision

1 ¼ 1024, the network input is RðPC;GC;RC;TC;ACÞ and

the expected output is M(W C). After determining

the network architecture, we can adjust the network

parameters and train the network by the model perform-

ance steps.

In order to compare the forecasting results, MLR is

established for the cyclical components W C and PC;GC;

ATC;AC;WUC. The regression equation for the cyclical

components W C, denoted as HP-MLR(C), is as follows:

WC ¼ 105:0752 539:58PC þ 43:317GC

þ 623:690ATC þ 2:362AC þ 0:312WUC ð19Þ

From Table 1 it is known that the linear correlation is

poor between W C and the cyclical components. The

minimum correlation coefficient is 0.054. The analyzing

results of the regression coefficient significance level have

Figure 7 | The actual and simulated cyclical components W T by HP-MLR(T) and

HP-FNN(T).

Table 1 | Correlation coefficients between water demand and factors variables for pro- and post-HP filter

Factors

Correlation coefficients

with W

The trend components correlation

coefficients with W T

The cyclical components correlation

coefficients with W C

Population 0.524 0.956 0.054

GDP 0.490 0.795 0.611

Annual average temperature 0.431 0.974 0.079

Greenery coverage 0.528 0.936 0.240

Annual water consumption 0.693 0.973 0.508
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shown, except for a factor ATC, the other factors’ influences

on the annual water demand are all not significant; and

through verifying the regression equation significance, we

can learn that the regression equation is not significant too.

So there exists nonlinear correlativity between the cyclical

components of the annual water demand and its influence

factors. The results are contrasted with those of

HP-FNN(C) and HP-MLR(C) in Figure 8.

It is as expected that HP-FNN(C) gives better simu-

lation results than HP-MLR(C) for nonlinear functions.

Adding the annual water demand trend components

to the cyclical components, the urban annual water

demand in Dalian is obtained. For comparison, five

models are established to simulate annual water demand,

which include traditional FNN and MLR and the new

models HP-MLR(T) þ MLR(C), HP-FNN(T) þ FNN(C)

and HP-MLR(T) þ FNN(C). The simulation relative errors

(RE) of those five models are shown together in Figure 9.

For the urban annual water demand, the simulation

precisions of those models based on the HP filter

are all increased. The average simulating errors are

decreased as follows: from 6.96% of MLR to 2.83% of

HP-MLR(T) þ MLR(C); from 3.62% of FNN to 1.35%

of HP-FNN(T) þ FNN(C) and further to 0.59% of

HP-MLR(T) þ FNN(C). The results of the contrast

analysis show that the MLR model is better in prediction

for the high linear correlation factors, but the FNN model

performs better for both linear and nonlinear correlations

between urban annual water demand and its influence

factors. And, after HP filtering, the simulation results

can be improved and the method proposed in this paper

is reasonable.

Model testing

In order to test the presented model HP-MLR(T)

þ FNN(C), the annual water consumptions from 2001 to

2007 are forecast by the HP-MLR(T) þ FNN(C) model

based on the corresponding influence factors, and the

forecast results are compared with the actual values and the

prediction results of the other methods HP-MLR(T)

þ MLR(C), HP-FNN(T) þ FNN(C) and FNN. The actual

and forecast values are listed in Table 2.

The maximum relative errors of the forecasting

models HP-MLR(T) þ FNN(C), HP-MLR(T) þ MLR(C),

HP-FNN(T) þ FNN(C) and FNN are 6.91%, 18.29%, 4.65%

and 7.02%. respectively; the average errors are 2.12%,

8.27%, 2.68% and 4.07%, respectively. Comparing the

forecast results of the different models in Figure 9 and

Table 2, the results show that the simulation results of HP-

FNN(T) þ FNN(C) are almost as good as for HP-MLR(T)

þ FNN(C), and both of them are better than the results

from the othermodels, but the forecast results ofHP-FNN(T)

þ FNN(C) are inferior to HP-MLR(T) þ FNN(C). Compar-

ing the modeling process of the MLR and FNN, the

FNN model is more complex and needs more memory

than the MLR method. Therefore the proposed model

HP-MLR(T) þ FNN(C) is simpler and more appropriate

to forecast urban water demand than the others.

Figure 8 | The actual and simulated cyclical components W C by HP-MLR(C) and

HP-FNN(C).

Figure 9 | The annual water demand forecasting relative errors for different

forecasting models.
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The influence factors’ sensitivity analysis for

HP-MLR(T) 1 FNN(C) model

In order to analyze the reasonability of the HP-MLR(T)

þ FNN(C) model, the sensitivities of the influence factors

are analyzed. When the factors of population, GDP, annual

average temperature, greenery coverage and the previous

water consumption are increased by 5%, the change of

annual water demand forecasting values are 2.63%, 0.11%,

1.83%, 21.19%, and 5.25%, respectively. From the results

of the sensitivity analysis, we can see the previous annual

water consumption has the greatest effect on the urban

annual water demand, the population is secondary, and the

other factors have a small influence on the annual water

demand. Consequently, the parameters of population, GDP,

annual average temperature and greenery coverage in the

model can be determined by urban development planning

or forecasting the varying trend; and the previous annual

water demand is an antecedent factor. The model in this

study can be used for forecasting the urban annual water

demand in a given planning year.

In order to analyze the reasonability of selecting factors,

we gradually get rid of the factors with little sensitivity, and

take (P, AT, A, WU), (P, AT, WU) and (P, WU) as the model

inputs to forecast the annual water demand of Dalian. The

maximum relative errors of water demand forecasting

values of 1980–2007 are 14.27%, 15.35% and 17.41%,

respectively, while the average errors are 3.58%, 4.26% and

5.74%, respectively. Through comparing with the models

proposed in the paper, the model with inputs (P, G, AT, A,

WU) performs best and it proves that the factors in the

model are selected reasonably and comprehensively.

The planning year annual water demand forecasting

for Dalian

When forecasting the annual water demand for a planning

year, the difficulty is to determine the values of the influence

factors. After the HP filter, the trend values of annual water

demand and its influence factors are about 0.894–1.196

times the actual value, which shows that the main

components for annual water demand and its influence

factors are the trend components. For the factors deter-

mined difficultly, the values can be obtained through

analyzing the increasing trend and fluctuation pattern

according to the HP filter results.

Taking 2010 and 2020 as Dalian’s planning years,

respectively, the factors of population, GDP and greenery

coverage can be obtained according to the urban develop-

ment planning scheduling, and the annual average tem-

perature can be determined by the increasing trend.

According to the Dalian development planning project, in

2010, the increasing rate of population is 0.8%, the

population will arrive at 6,105,200, GDP will be

438 billion CNY, the greenery coverage will be 12,821ha

and the previous water consumption can use the annual

water demand forecasting value in 2009; the future annual

average temperature should be determined based on

Figure 4. By analyzing the trend curve of annual average

temperature in Figure 4, the trend component of the annual

average temperature is 11.8. In Figure 4, the fluctuation

range of the cyclical component is [21, 1] and the cyclical

component values are about 8.5% of the trend component

values. Based on the trend component and fluctuation

range of the cyclical component, the interval value of

Table 2 | The annual water demand values forecasted by four models for Dalian in 2001–2007

Year

Actual value

(104m3)

Forecasting value of

HP-MLR(T) 1 FNN(C)

(104m3) RE (%)

Forecasting value of

HP-MLR(T) 1 MLR(C)

(104m3) RE (%)

Forecasting value of

HP-FNN(T) 1 FNN(C)

(104m3) RE (%)

Forecasting value

of FNN (104m3) RE (%)

2001 92,127 92,501 0.41 93,245 1.21 93,056 1.01 94,052 2.09

2002 92,772 92,885 0.12 95,548 2.99 94,036 1.36 92,054 0.77

2003 87,705 90,123 2.76 92,914 5.94 91,785 4.65 93,126 6.18

2004 90,027 92,415 2.65 106,495 18.29 93,152 3.47 92,785 3.06

2005 115,800 107,800 6.91 100,221 13.45 111,023 4.13 111,023 4.13

2006 114,500 114,295 0.18 115,198 0.61 113,420 0.94 120,519 5.26

2007 122,600 120,356 1.83 141,504 15.42 126,530 3.21 131,205 7.02
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annual average temperature in 2010 is [10.8, 12.8].

Similarly, the values of influence factors in 2020 can be

determined. According to the influence factors values in

2010 and 2020, the annual water demands of Dalian in

2010 and 2020 are respectively varying within the intervals

[1,473.56 £ 106, 1,492.95 £ 106] m3 and [1,796.35 £ 106,

1,815.93 £ 106] m3 forecast by the above combined

forecasting model HP-MLR(T) þ FNN(C), and the average

values of annual water demands in 2010 and 2020 are

respectively 1,483.75 £ 106m3 and 1,806.14 £ 106m3. By

analyzing the forecasting values, we can see that the change

of the cyclical component value of the annual average

temperature has a small influence on the future annual

water demand, and the analyzing result tallies with the

conclusion of the sensitivity analysis. Consequently, as a

planning forecast, the cyclical component of the annual

average temperature can be ignored when its value is small.

The forecast results can support the decision-making of

allocating the inter-basin water transfer and developing the

seawater desalination and reclaimed sewage.

CONCLUSION

This study selects some socio-economic, climate and other

related factors to forecast the urban water demand, and in

order to improve the forecasting accuracy, the HP filter

method is adopted to separate the historical data of the

annual water demand and its influence factors into a trend

and a cyclical component. After HP filtering, the HP-MLR

and HP-FNN techniques are applied to forecast the urban

water demand. From the performance of two models based

on the HP filter, we can conclude that: (1) after the HP

filter, the correlation coefficients of the trend components

between annual water demand and the influence factors are

all increased and the HP-MLR(T) model is established with

high forecasting accuracy. (2) For the poor correlation

cyclical components, the HP-FNN(C) model for annual

water demand cyclical components is built, and the results

show that the HP-FNN(C) has better simulation results for

nonlinear functions. (3) Through combining the trend

model and cyclical model, the HP-MLR(T) þ FNN(C)

model is obtained, which considers the linear and nonlinear

relationship, respectively. The HP-MLR(T) þ FNN(C)

model can not only reflect the development trend of

water demand and its influence factors, but also analyze

their fluctuation characteristics. The application results

show that the model HP-MLR(T) þ FNN(C) outperforms

the HP-MLR(T) þ MLR(C) and HP-FNN(T) þ FNN(C)

techniques used alone; and it also concludes that the

better results are obtained when the HP filter is adopted

to separate the water demand and its influence factors

into trend components and cyclical components.

(4) The long-term forecasting model can provide a reference

for the water manager to make decisions such as

allocating water resources, planning for urban development

scheduling, and designing projects of inter-basin

water transfer.
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