Abstract
This paper presents numerical and experimental investigations of the combined effect on pressure transients of air pockets and homogenous water–air bubble mixtures. An air pocket can accumulate at a high point of a pipeline along the control section located at the transition between pipes with sub- and supercritical slope, forcing open channel flow conditions underneath the pocket that ends in a hydraulic jump at the downward sloping pipe. The turbulence action at the jump generates small air bubbles that are entrained and transported along the pipe producing a two-component bubbly flow within the continuous liquid phase. A numerical model is developed, combining the explicit–implicit scheme proposed by McGuire and Morris and the method of characteristics for solving the quasi-linear hyperbolic partial differential equations for transient two-phase flow expressed in conservation form. To verify the proposed model, an experimental apparatus made of PVC was used to carry out hydraulic transient experiments. Tests were conducted in a tank–pipe–valve system and a valve with a pneumatic actuator at the downstream end generated transients. Numerical results at the test section pipe compares favorably with experimental data. The results show that pressure transients are significantly reduced with increasing air-pocket volumes and bubbly flow air content.
- air bubble
- air pocket
- hydraulic jump
- hydraulic transient flow
- water–air mixture
- First received 18 January 2017.
- Accepted in revised form 22 November 2017.
- © IWA Publishing 2017
Sign-up for alerts

